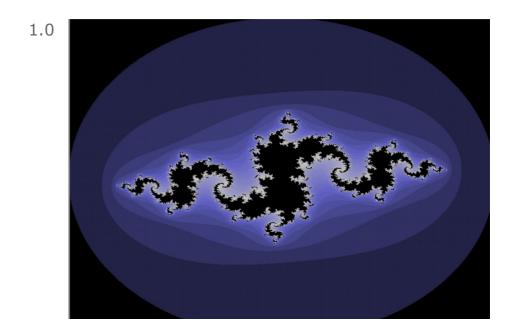
Les nombres complexes - Partie II



OLIVIER LÉCLUSE
CREATIVE COMMON BY-NC-SA

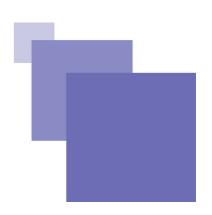
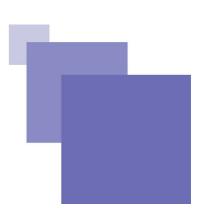


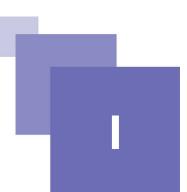
Table des matières

Objectifs	5
I - Module et argument d'un nombre complexe	7
A. Définitions	
B. Calculs de modules et arguments	11
C. Représentation géométrique	12
D. Problème	12
E. Forme trigonométrique	12
F. Exercice	15
G. Déterminer un ensemble de points	15
II - Notation exponentielle	17
A. Propriétés des modules	17
B. Calculer avec les modules	18
C. Propriétés des arguments	18
D. Notation exponentielle	20
E. Calculer avec la forme exponentielle	25
III - Test final de la seconde partie	27
Solution des exercices	29



Forme trigonométrique :

- Module et argument, interprétation et propriétés
- Notation exponentielle



Définitions	7
Calculs de modules et arguments	11
Représentation géométrique	12
Problème	12
Forme trigonométrique	12
Exercice	15
Déterminer un ensemble de points	15

A. Définitions

Définition: Module et Argument

Dans le plan complexe muni d'un repère orthonormé $(0;\vec{u};\vec{v})$, on considère un point M d'affixe z non nulle.

On appelle *module* de z et on note |z| la mesure de la longueur OM. On a |z| = OM

On appelle argument de z et on note arg(z) toute mesure en **radians** de l'angle orienté de vecteurs $(\vec{u}; \overline{OM})$

Complément : Module d'un nombre complexe

Si z = a + ib, alors $|z| = \sqrt{a^2 + b^2} = \sqrt{z\overline{z}}$

Si z_A et z_B sont les affixes respectives de deux points A et B, alors $z_B - z_A$ est l'affixe du vecteur \overrightarrow{AB} et $|z_B - z_A| = AB$

Complément : Argument d'un nombre complexe

Un nombre complexe a une infinité d'arguments, définis à 2π près : Si θ est l'un d'entre eux, les autres sont de la forme $\theta+2k\pi$ où $k\in\mathbb{Z}$. On dit que $\arg(z)$ est défini **modulo** 2π et on note $\arg(z)=\theta$ (2π)

Exemple : Exemples

l	Z	i	-i	2	-2	1+i
	z	1	1	2	2	$\sqrt{2}$
	arg(z)	$\frac{\pi}{2}$ (2 π)	$-\frac{\pi}{2} (2\pi)$	$0(2\pi)$	π (2 π)	$\frac{\pi}{4}$ (2π)

- Un nombre réel **positif** a pour argument 0.
- Un nombre réel **négatif** a pour argument π .

• Un imaginaire pur a pour argument $\frac{\pi}{2}$ ou $-\frac{\pi}{2}$. On peut écrire $\frac{\pi}{2}$ (π)

B. Calculs de modules et arguments

Question 1

[Solution n°1 p 19]

Calculer |-3+4i|

Question 2

[Solution n°2 p 19]

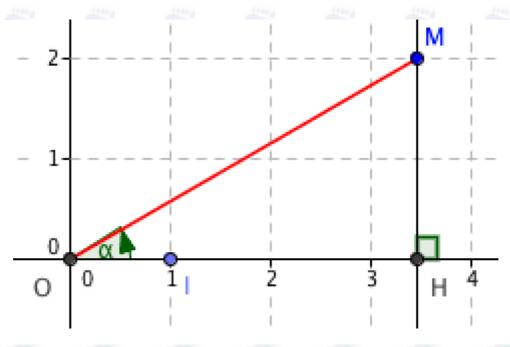
On donne $z_A = -1 + 3i$ l'affixe du point A et $z_B = 2 - i$ l'affixe du point B. Calculer la distance AB

Question 3

[Solution n°3 p 19]

Calculer $arg(2\sqrt{3} + 2i)$

Indice :



Question 4

Calculer $arg(2\sqrt{3} - 2i)$

[Solution n°4 p 19]

C. Représentation géométrique

Vous pouvez reprendre le visionnage de la suite du film *Dimensions*¹ présentant les notions de module et d'argument à partir de la 9ième minute.

D. Problème

Soient u et v deux nombres complexes **distincts** et de **même module** r

Question

[Solution n°5 p 20]

Démontrer que $z = \frac{u+v}{u-v}$ est imaginaire pur

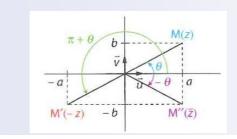
Indice:

On pourra montrer que $\bar{z} = -z$

E. Forme trigonométrique

La propriété suivante de justifie aisément par les propriétés des symétries.

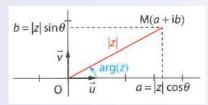
Fondamental



- $|\bar{z}| = |z|$ et si $z \neq 0$, $\arg(\bar{z}) = -\arg(z)(2\pi)$
- |-z| = |z| et si $z \neq 0$, $arg(-z) = -arg(z) + \pi (2\pi)$

Fondamental : Forme trigonométrique d'un complexe

Soit z = a + ib un complexe non nul et θ un argument de z



Alors $a = |z| \cos \theta$ et $b = |z| \sin \theta$

L'écriture $z = |z| (\cos \theta + i \sin \theta)$ est appelée forme trigonométrique de z

1 - http://www.dimensions-math.org/Dim_fr.htm

Complément : Démonstration

Considérons le point M_1 du cercle trigonométrique défini par $\overrightarrow{OM_1} = \overrightarrow{\overrightarrow{OM}}$

Les vecteurs $\overrightarrow{OM_1}$ et \overrightarrow{OM} sont colinéaires donc l'angle orienté $(\vec{u}\,;\overrightarrow{OM_1})$ est égal à l'angle orienté $(\vec{u}\,;\overrightarrow{OM})$

Par conséquent les coordonnées de M_1 sur le cercle trigonométrique sont $(\cos\theta\;;\sin\theta)$

Si z_1 est l'affixe de M_1 , on a $z_1 = \cos \theta + i \sin \theta$

Mais on a
$$z_1 = \frac{z}{|z|}$$
 donc $z = |z| z_1$

Donc $z = |z| (\cos \theta + i \sin \theta)$

Exemple

Soit
$$z = \sqrt{3} + i$$

On a $|z| = \sqrt{3} + 1 = 2$
Donc $z = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)$

On reconnaît dans la parenthèse $\cos \frac{\pi}{6}$ et $\sin \frac{\pi}{6}$

Donc
$$z = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$
 est la forme trigonométrique de z . On en déduit que
$$\arg(z) = \frac{\pi}{6} \ (2\pi)$$

F. Exercice

Question

[Solution n°6 p 20]

Déterminer une forme trigonométrique de $z = -2\left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)$

Indice :

Attention l'écriture donnée n'est pas une forme trigonométrique car |z| ne peut être égal à -2 !

G. Déterminer un ensemble de points

Question 1

[Solution n°7 p 21]

Déterminer l'ensemble des points M d'affixe z du plan tels que |z-i|=|z+1| Indice :

On pourra considérer le point A(0;1) et B(-1;0)

Question 2

[Solution n°8 p 21]

Déterminer l'ensemble des points M d'affixe z du plan tels que $\arg(z) = -\frac{\pi}{6} (2\pi)$

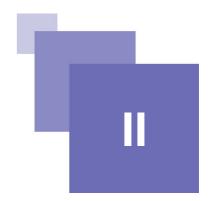
Question 3

[Solution n°9 p 21]

Déterminer l'ensemble des points M d'affixe z du plan tels que $z'=\frac{z'-1}{z-1}$ soit imaginaire pur

Indice:

z' est imaginaire pur si et seulement si $\bar{z}' = -z'$



Notation exponentielle

Propriétés des modules	17
Calculer avec les modules	18
Propriétés des arguments	18
Notation exponentielle	20
Calculer avec la forme exponentielle	25

A. Propriétés des modules

Fondamental

Soit z et $z' \neq 0$ deux complexes. Alors

- Module du conjugué : $|z| = |\bar{z}|$
- Module d'un produit : $|z \times z'| = |z| \times |z'|$.

Module d'un quotient : $\left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$

• Inégalité triangulaire : $|z + z'| \le |z| + |z'|$

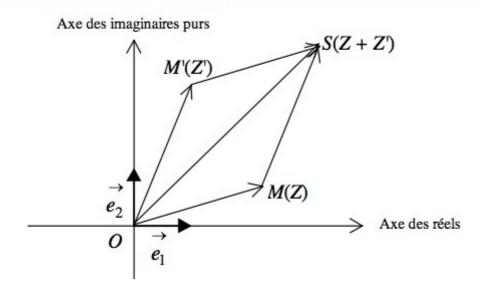
Complément : Démonstration

 $|\bar{z}|^2 = \bar{z}\bar{\bar{z}} = \bar{z}z = |z|^2$ ce qui donne la première égalité puisque le module est positif. $|z \times z'|^2 = zz'\bar{z}z' = z\bar{z}z'\bar{z}' = |z|^2|z'|^2$

Puisqu'un module est positif, on en déduit que |zz'| = |z||z'|.

On procède de manière analogue pour le quotient.

L'inégalité triangulaire se justifie aisément grâce à la figure ci-dessous.



B. Calculer avec les modules

Question

[Solution n°10 p 21]

 $\bar{z}-i$

Soit z un complexe différent de i. Montrer que $\overline{z+i}$ a pour module 1.

C. Propriétés des arguments

Fondamental

Pour tous complexes z et z' non nuls, on a :

- $arg(zz') = arg(z) + arg(z') (2\pi)$
- $\arg \bar{z} = -\arg z$
- Pour tout $n \in \mathbb{N}$, $arg(z^n) = n \times arg(z)$ (2π)

$$\arg\left(\frac{z}{z'}\right) = \arg(z) - \arg(z') (2\pi)$$

Complément : Démonstration

On note z = a + ib, z' = a' + ib', $\arg z = \theta$, $\arg(z') = \theta'$ et $\arg(zz') = \Theta$

•
$$zz' = aa' - bb' + i(ab' + a'b)$$

Donc on a
$$\cos \Theta = \frac{aa' - bb'}{|zz'|} \operatorname{et} \sin \Theta = \frac{ab' + a'b}{|zz'|}$$

Mais on a aussi $a = |z| \cos \theta$, $b = |z| \sin \theta$, $a' = |z'| \cos \theta'$, $b' = |z'| \sin \theta'$

$$\cos \Theta = \frac{|z| \cos \theta |z'| |\cos \theta' - |z| |\sin \theta |z'| |\sin \theta'}{|zz'|}$$

Et puisque |zz'| = |z||z'|, on peut simplifier les modules pour avoir

 $\cos\Theta = \cos\theta\cos\theta' - \sin\theta\sin\theta' \, donc \, \cos\Theta = \cos(\theta + \theta')$

Et de la même façon, on a $\sin \Theta = \sin(\theta + \theta')$

On en déduit que
$$\Theta = \theta + \theta'$$
 (2π) c'est à dire $\arg\left(\frac{z}{z'}\right) = \arg(z) - \arg(z')$ (2π)

• $\arg z\bar{z} = 0$ (2π) car $z\bar{z}$ est réel d'où l'égalité

- $\arg z\bar{z}=0\;(2\pi)\;\mathrm{car}\;z\bar{z}\;\mathrm{est}\;\mathrm{r\acute{e}el}\;\mathrm{d'o\grave{u}}\;\mathrm{l'\acute{e}galit\acute{e}}$
- La propriété sur $arg(z^n)$ se démontre par récurrence en s'appuyant sur la propriété précédente.
- Pour le quotient, on applique la propriété du produit avec $Z=\frac{\zeta}{z'}$ et z' :

 $z = Z \times z'$ donc $arg(z) = arg(Z) + arg(z') (2\pi)$ ce qui donne la formule désirée.

D. Notation exponentielle

Soit f la fonction à valeurs dans \mathbb{C} qui à tout réel θ associe $f(\theta) = \cos \theta + i \sin \theta$ $f(\theta)$ a pour module 1 et pour argument θ (2 π)

si θ' est un autre réel, alors le produit $f(\theta) \times f(\theta')$

- a pour module le produit des deux modules donc 1
- a pour argument la somme des deux arguments donc θ + θ' (2π)

Donc $f(\theta) \times f(\theta') = f(\theta + \theta')$

Si on dérive f(x), on obtient $f'(x) = -\sin(x) + i\cos(x) = if(x)$

Ces deux analogies troublantes avec la fonction exponentielle que nous avons vu au chapitre précédent justifient l'emploi de la notation suivante :

Définition : Notation exponentielle

Pour tout réel θ , on pose $e^{i\theta} = \cos\theta + i\sin\theta$

Exemple

 $e^{0i} = \cos 0 + i \sin 0 = 1$, ce qui est un résultat déjà connu $e^{i\pi} = \cos \pi + i \sin / pi = -1$

Complément

Cette dernière égalité, que l'on peut écrire $e^{i\pi} + 1 = 0$ est parmi les équations les plus célèbres des mathématiques.

Elle a l'extraordinaire particularité de lier l'analyse (avec la fonction exponentielle), la géométrie (avec π), l'algèbre (avec i), et l'arithmétique avec l'emploi des nombres 0 et 1, le tout dans une formule simple et élégante. Elle fait intervenir les 5 constantes les plus fondamentale des mathématiques : $0, 1, i, e, \pi$. C'est l'identité d'Euler.

Fondamental

Tout complexe non nul z s'écrit donc $z = re^{i\theta}$ où

- r = |z|
- $\theta = \arg(z)$

Complément

Sous cette forme, on retrouve aisément les propriétés des modules et des arguments vu au début de cette section :

Si
$$z = re^{i\theta}$$
 et $z' = r'e^{i\theta'}$ alors $zz' = rr'e^{i\theta}e^{i\theta'} = rr'e^{i(\theta+\theta')}$

On voit que pour multiplier deux complexes, on fait le produit des modules et la somme des arguments.

On retrouve une formule analogue avec le quotient.

E. Calculer avec la forme exponentielle

Question 1

[Solution n°11 p 22]

Écrire sous forme exponentielle les nombres $z_1=1-i\sqrt{3}$ et $z_2=-2+2i$

Question 2

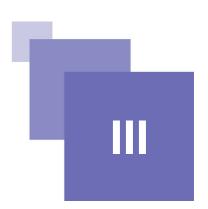
[Solution n°12 p 22]

Calculer $z_1 \times z_2$ sous forme algébrique puis exponentielle.

 5π

En déduire les valeurs de cosinus et sinus $\overline{12}$

Test final de la seconde partie

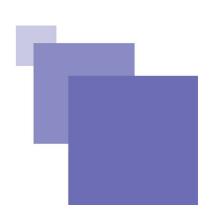


Pour ce test d'auto-évaluation final, vous devez obtenir un minimum de 80% de bonnes réponses. En cas d'échec, révisez la section du cours qui vous a posé des difficultés et retentez à nouveau le test.

Exercice 1		
-1 +	$\sqrt{3}i$:	
	est égal à $2\left(-\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$	
	est égal à $-2e^{-i}\frac{\pi}{3}$	
	2π	
	a pour module 2 et pour argument 3	
Exe	rcice 2	
L'en	semble des points M d'affixe z tels que $ z-i =3$ est :	
	un segment de droite	
	un cercle	
	égal à l'ensemble des points d'affixe $z=i+3e^{i\theta}, \theta\in\mathbb{R}$	
Exe	rcice 3	
L'en	semble des points M d'affixe z telle que $\arg(z) = \frac{\pi}{4} (2\pi)$:	
0	est la droite d'équation $x = \frac{\pi}{4}$	
0	est réduit au point A image de $e^{i\frac{\pi}{4}}$	
0	a pour équation $y = x$ et $x > 0$	

Exe	ercice 4
(- v	$(3+i)^{2013}$ est imaginaire pur
0	Vrai
0	Faux
Exe	ercice 5
Poui aligr	r tout nombre complexe non nul z , les points M d'affixe z , N d'affixe \overline{z} et O sont nés
0	Vrai
0	Faux

Solution des exercices



> Solution n°1 (exercice p. 8)

$$|-3+4i| = \sqrt{(-3)^2+4^2} = \sqrt{25} = 5$$

> Solution n°2 (exercice p. 8)

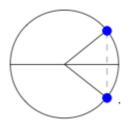
$$|z_B - z_A| = |2 - i - (-1 + 3i)| = |3 - 4i| = \sqrt{3^2 + (-4)^2} = \sqrt{25} = 5$$

Dong $AB = 5$

> Solution n°3 (exercice p. 8)

Soit
$$\alpha$$
 la mesure de l'angle $(\overrightarrow{OI};\overrightarrow{OM})$, on sait que $\cos(\alpha) = \frac{OH}{OM}$
$$OM = \sqrt{(2\sqrt{3})^2 + 2^2} = \sqrt{12 + 4} = \sqrt{16} = 4$$

$$\cos\alpha = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2}$$



Notre connaissance du cercle trigonométrique nous dit que $\alpha = \frac{\pi}{6}$ ou $\alpha = -\frac{\pi}{6}$

Mais nous savons de plus que $\sin\alpha = \frac{MH}{OM} = \frac{1}{2} \text{ donc positif.}$ Cela nous permet d'exclure $\alpha = -\frac{\pi}{6}.$

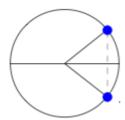
On conclut que $\arg(2\sqrt{3} + 2i) = \frac{\pi}{6}(2\pi)$

> Solution n°4 (exercice p. 8)

Soit α la mesure de l'angle $(\overrightarrow{OI};\overrightarrow{OM})$, on sait que $\cos(\alpha) = \frac{OH}{OM}$

Solution des exercices

$$OM = \sqrt{(2\sqrt{3})^2 + 2^2} = \sqrt{12 + 4} = \sqrt{16} = 4$$
$$\cos \alpha = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2}$$



Notre connaissance du cercle trigonométrique nous dit que $\alpha = \frac{\pi}{6} \text{ ou }$ $\alpha = -\frac{\pi}{6}$

Mais nous savons de plus que $\sin \alpha = -\frac{MH}{OM} = -\frac{1}{2}$ donc négatif.

Cela nous permet de conclure $\alpha = -\frac{\pi}{6}$.

On conclut que $\arg(2\sqrt{3}-2i)=-\frac{\pi}{6}~(2\pi)$

> Solution n°5 (exercice p. 9)

$$\frac{\overline{u+v}}{\overline{u-v}} = \frac{\overline{u}+\overline{v}}{\overline{u}-\overline{v}}$$

Multiplions le numérateur et le dénominateur par uv. On obtient alors

$$\frac{\overline{u+v}}{u-v} = \frac{\overline{u}uv + uv\overline{v}}{\overline{u}uv - uv\overline{v}}$$

Or on sait que $u\bar{u} = v\bar{v} = r$ donc

$$\frac{\overline{u+v}}{\overline{u-v}} = \frac{rv + ur}{rv - ur}$$
 et en simplifiant par r,

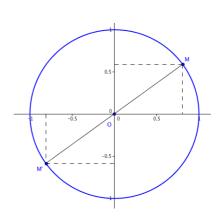
$$\frac{\overline{u+v}}{\overline{u-v}} = -\frac{u+v}{u-v}$$

Donc $\overline{z} = -z$ ce qui prouve que z est imaginaire pur.

> Solution n°6 (exercice p. 10)

$$z = 2\left(-\cos\frac{\pi}{5} - i\sin\frac{\pi}{5}\right)$$

Or on sait que $\cos\left(\frac{\pi}{5} + \pi\right) = -\cos\frac{\pi}{5}$ et $\sin\left(\frac{\pi}{5} + \pi\right) = -\sin\frac{\pi}{5}$ (cela se lit sur le cercle trigonométrique).



On a donc
$$z = 2\left(\cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5}\right)$$

Le module de z est 2 et son argument est $\theta = \frac{6\pi}{5} (2\pi)$

> Solution n°7 (exercice p. 10)

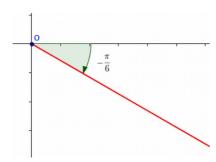
On considère les point A(0;1) et B(-1;0) et z_A et z_B les affixes respectives.

- $|z-i|=|z-z_A|$ représente la distance AM
- $|z+1|=|z-z_B|$ représente la distance BM

On recherche donc l'ensemble des points M vérifiant AM = BM. Ces points sont par définition sur la **médiatrice du segment** [AB]

> Solution n°8 (exercice p. 10)

$$\arg(z) = -\frac{\pi}{6} (2\pi)$$
 donc l'angle $(\vec{u}; \overrightarrow{OM}) = -\frac{\pi}{6} (2\pi)$



Le lieu des points M cherché est donc la demi-droite représentée ci-contre en rouge, à l'exclusion du point O, l'affixe de ce dernier n'ayant pas d'argument.

> Solution n°9 (exercice p. 11)

On cherche
$$z$$
 de telle sorte que $\frac{z+1}{z-1} = -\frac{\bar{z}+1}{\bar{z}-1}$

En supposant $z \neq 1$, par le produit en croix, on obtient l'égalité $(z+1)(\bar{z}-1)=-(\bar{z}+1)(z-1)$

En développant cette expression, on a $z\bar{z}-z+\bar{z}-1=-z\bar{z}+\bar{z}-z+1$

Ce qui donne en simplifiant $2z\bar{z}=2$ ou $z\bar{z}=1$

On cherche l'ensemble des points M vérifiant $OM^2=1$ ou OM=1

Il s'agit du cercle de centre O et de rayon 1, duquel on retirera le point $A(0\,;1)$

> Solution n°10 (exercice p. 14)

 $\bar{z} - i$ et z + i sont **conjugués**. Ils ont donc **même module**.

$$\operatorname{Or} \left| \frac{\overline{z} - i}{z + i} \right| = \frac{|\overline{z} - i|}{|z + i|}$$

Puisque $|\bar{z} - i| = |z + i|$, on en déduit que $\left|\frac{\bar{z} - i}{z + i}\right| = 1$

> Solution n°11 (exercice p. 16)

$$|z_1|=\sqrt{1+3}=2$$
 et $z_1=2\left(rac{1}{2}-irac{\sqrt{3}}{2}
ight)$. On en déduit d'après les valeurs remarquables du cercle trigonométrique que $rg(z_1)=-rac{\pi}{3}\left(2\pi
ight)$

$$Donc z_1 = 2e^{-i\frac{\pi}{3}}$$

$$|z_2| = \sqrt{4+4} = 2\sqrt{2}$$
 et $z_2 = 2\sqrt{2}\left(-\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)$. On en déduit d'après les valeurs remarquables du cercle trigonométrique que $\arg(z_2) = \frac{3\pi}{4} (2\pi)$

$$Donc z_2 = 2\sqrt{2} e^{i\frac{3\pi}{4}}$$

> Solution n°12 (exercice p. 16)

$$z_1 \times z_2 = (1 - i\sqrt{3})(-2 + 2i) = -2 + 2\sqrt{3} + i(2 + 2\sqrt{3})$$

$$z_1 \times z_2 = 2e^{-i\frac{\pi}{3}} \times 2\sqrt{2}e^{i\frac{3\pi}{4}} = 4\sqrt{2}e^{i\frac{5\pi}{12}}$$

$$z_1 \times z_2 = 2e^{-3} \times 2\sqrt{2} e^{-4} = 4\sqrt{2}e^{-12}$$

La forme trigonométrique de $z_1 \times z_2$ est donc $4\sqrt{2}\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right)$. Par identification avec la forme algébrique, on en déduit que

$$\cos\frac{5\pi}{12} = \frac{-2 + 2\sqrt{3}}{4\sqrt{2}}$$

$$\sin\frac{5\pi}{12} = \frac{2 + 2\sqrt{3}}{4\sqrt{2}}$$