Fluctuation d'échantillonnage

Revenons à notre exemple de départ sur l'hypertension. Voici quelques exemples de fréquences observées dans des échantillons de 30 personnes :

 ;  ; etc...

On constate que certaines fréquences sont égales à 0,3, mais pas toutes. Ces fréquences fluctuent autour de 0,3, on dit qu'il y a fluctuation d'échantillonnage.

Le graphique ci-contre montre la simulation sur 100 échantillons de 30 personnes de la variation de la fréquence observée d'hypertendus.

En fait, en théorie des probabilités, on démontre la propriété ci-dessous :

FondamentalIntervalle de fluctuation au seuil de 95%

On considère un caractère apparaissant avec une proportion p dans une population.

On observe ce caractère dans un échantillon de taille n.

Sous certaines conditions[1], la fréquence f observée du caractère dans cet échantillon appartient à l'intervalle avec une probabilité d'au moins 95%.

L'intervalle ci-dessus s'appelle l'intervalle de fluctuation au seuil 95 %.

  1. Conditions d'application de la formule

    On admet communément les conditions de validité suivantes :

    • 0,2 <= p <= 0,8

    • n >= 25

ImprimerImprimer